# metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Zhi-Min Jin,<sup>a</sup>\* Zu-Guang Li,<sup>b</sup> Li Li,<sup>a</sup> Mei-Chao Li<sup>b</sup> and Mao-Lin Hu<sup>c</sup>

<sup>a</sup>College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, <sup>b</sup>College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and <sup>c</sup>Department of Chemistry, Wenzhou Normal College, Wenzhou, Zhejiang 325003, People's Republic of China

Correspondence e-mail: zhimin-j@tom.com

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.008 Å R factor = 0.054 wR factor = 0.123 Data-to-parameter ratio = 18.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Matrinium tetrachloroferrate(III)

The title compound,  $(C_{15}H_{25}N_2O)$ [FeCl<sub>4</sub>], consists of one matrinium cation {matrine is (7aS,13aR,13bR,13cS)-dodecahydro-1*H*,5*H*,8*H*-dipyrido[2,1-*f*:3',2',1'-*ij*][1,6]-naphthyridin-10-one} and one [FeCl<sub>4</sub>]<sup>-</sup> anion. One ring of the matrinium cation has a half-chair conformation, whereas the others have chair conformations. Chiral chains of the title compound are formed by C–H···O and N–H···O hydrogen bonds.

#### Comment

Matrine is one of the most important active ingredients of the traditional Chinese herbal medicine Ligusticum Wallichii Franchat (Ku Shen). It possesses anti-inflammatory properties (Tan *et al.*, 1985), an anti-arrhythmic effect (Zhang *et al.*, 1990), a significant inhibitive effect on proliferation cells and an inductive effect on differentiation in K-562 cells (Zhang *et al.*, 2001); it also has a protective effect on lipopolysacchride-reduced liver injury (Lin *et al.*, 1997), and on restraint and water immersion stress ulcers in mice (Yamazaki *et al.*, 1984). The title compound, (I), has been synthesized, and its structure (Table 1) is discussed here.



The asymmetric unit of (I) comprises one  $[\text{FeCl}_4]^-$  anion and one matrinium cation (Fig. 1). The *D* ring (containing atom C15) of the matrinium cation has a half-chair conformation, whereas the other rings adopt chair forms. The *A* (containing C2) and *C* (containing C17), and *B* (containing C10) and *C* rings have a *cis*-type linkage, whereas *A* and *B* have a *trans*-type linkage. The chiral C5(*S*), C6(*S*), C7(*R*) and C11(*R*) atoms have the same absolute configurations as those reported previously (Ibragimov *et al.*, 1978; Zhang *et al.*, 2003).

The NH group is engaged in a hydrogen bond with the O atom of a symmetry-related molecule. The H1N···O1 distance (Table 1), which is shorter than the H···O distances observed in other compounds [1.96 Å (de Figueiredo *et al.*, 2002) and 2.131–2.142 Å (Morzyk-Ociepa *et al.*, 2004)], indicates a strong hydrogen bond. C–H···O hydrogen bonds can play important roles in determining molecular packing (Braga *et al.*, 1999;

Received 11 October 2005 Accepted 27 October 2005 Online 5 November 2005

**m2466** Jin et al. • (C<sub>15</sub>H<sub>25</sub>N<sub>2</sub>O)[FeCl<sub>4</sub>]

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved



#### Figure 1

The asymmetric unit of (I), with atom labels, showing 35% probability displacement ellipsoids.





Part of the packing of (I), showing the chiral chain running along the a axis. Hydrogen bonds are depicted as dashed lines. H atoms not involved in these interactions have been omitted.

Janiak & Scharmann, 2003; Chang *et al.*, 2005; Zhu *et al.*, 2005). In the crystal structure of (I), beside the strong N-H···O hydrogen bond, there are also two weak C-H···O hydrogen interactions, resulting in a triple O acceptor (Table 1 and Fig. 2). The matrinium cations are linked with one another *via* these N-H···O and C-H···O interactions to form a chiral chain running along the *a* axis (Fig. 2).

## **Experimental**

The caulis of Ligusticum Wallichii Franchat from Qinling Mountain (20.05 kg) was extracted with 70% aqueous EthOH at room temperature. After evaporation of EthOH, the concentrate was acidified to pH 4 with dilute HCl and extracted with  $CH_2Cl_2$ . Then,

#### Crystal data

 $(C_{15}H_{25}N_2O)$ [FeCl<sub>4</sub>]  $M_r = 447.02$ Orthorhombic,  $P2_12_12_1$  a = 8.4871 (8) Å b = 12.9037 (12) Å c = 18.2256 (17) Å V = 1996.0 (3) Å<sup>3</sup> Z = 4 $D_x = 1.488$  Mg m<sup>-3</sup>

#### Data collection

Bruker SMART CCD area-detector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000)  $T_{\min} = 0.69, T_{\max} = 0.77$ 10747 measured reflections

### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.054$   $wR(F^2) = 0.123$  S = 1.113921 reflections 209 parameters H-atom parameters constrained Mo  $K\alpha$  radiation Cell parameters from 5069 reflections  $\theta = 2.6-26.6^{\circ}$  $\mu = 1.30 \text{ mm}^{-1}$ T = 293 (2) K Block, orange  $0.33 \times 0.25 \times 0.2 \text{ mm}$ 

3921 independent reflections 3402 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.039$   $\theta_{max} = 26.0^{\circ}$   $h = -10 \rightarrow 8$   $k = -15 \rightarrow 15$  $l = -17 \rightarrow 22$ 

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.046P)^2 \\ &+ 2.4474P] \\ &where P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} < 0.001 \\ \Delta\rho_{max} = 0.34 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{min} = -0.32 \text{ e } \text{\AA}^{-3} \\ \text{Absolute structure: Flack (1983),} \\ 1671 \text{ Friedel pairs} \\ \text{Flack parameter: } 0.06 (3) \end{split}$$

# Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                              | $D-{\rm H}$          | $H \cdots A$         | $D \cdots A$                        | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------------------------------------------------|----------------------|----------------------|-------------------------------------|--------------------------------------|
| $N1 - H1N \cdots O1^{i}$ $C11 - H11 \cdots O1^{i}$ $C17 - H17B \cdots O1^{i}$ | 0.91<br>0.98<br>0.97 | 1.86<br>2.45<br>2.54 | 2.748 (6)<br>3.241 (6)<br>3.316 (7) | 166<br>138<br>137                    |
|                                                                               |                      |                      |                                     |                                      |

Symmetry code: (i)  $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ .

All H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.91 (N–H), 0.97 (methylene) and 0.98 Å (methine), with  $U_{\rm iso}({\rm H})$  values of 1.2 times  $U_{\rm eq}$  of the parent atoms.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are indebted to the National Natural Science Foundation of China (No. 30500339) for financial support.

#### References

- Braga, D., Draper, S. M., Champeil, E. & Grepioni, F. (1999). J. Organomet. Chem. 573, 73–77.
- Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

- Chang, H. C., Jiang, J. C., Chuang, C. W., Lin, J. S., Lai, W. W., Yang, Y. C. & Lin, S. H. (2005). *Chem. Phys. Lett.* **410**, 42–48.
- Figueiredo, A. T. de, Deflon, V. M., Bessler, K. E., Maichle-Mossmer, C. & Abram, U. (2002). *Polyhedron*, **21**, 2351–2356.
- Flack H. D. (1983). Acta Cryst. A39, 876-881.
- Ibragimov, B. T., Talipov, S. A., Tishchenko, G. N., Kushmuradov, Yu. K. & Aripov, T. F. (1978). *Kristallografiya*, **23**, 1189–1195.
- Janiak, C. & Scharmann, T. G. (2003). Polyhedron, 22, 1123-1133.
- Lin, W., Zhang, J. P., Hu, Z. L. & Qian, D. H. (1997). J. Pharm. 32, 93-96.
- Morzyk-Ociepa, B., Michalska, D. & Pietraszko, A. (2004). J. Mol. Struct. 688, 87–94.
- Tan, H. R., Zhang, B. & Zhong, H. (1985). J. Integr. Trad. Chin. West. Med. 5, 108–110.
- Yamazaki, M., Arai, A., Suzuki, S. & Takeuchi, T. (1984). Yakug. Zas. 104, 293–301. (In Japanese.)
- Zhang, B. H., Wang, N. S., Li, X. J., Kong, X. J. & Cai, Y. L. (1990). Chin. J. Pharm. 11, 253–257.
- Zhang, L. P., Jiang, J. K., Tam, J. W., Zhang, O. Y., Liu, X. S., Xu, X. R., Liu, B. Z. & He, Y. (2001). *J. Leuk. Res.* **25**, 793–800.
- Zhang, Z. T., Yang, B. L., Liu, Q. G. & Yu, K. B. (2003). Acta Chim. Sin. 61, 1058–1064.
- Zhu, X. Q., Wang, J. S. & Cheng, J. P. (2005). Tetrahedron Lett. 46, 877–879.